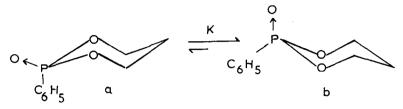
HETEROCYCLES CONTENANT DU PHOSPHORE. IX- PARAMETRES THERMODYNAMIQUES DE L'EQUILIBRE CONFORMATIONNEL DE QUELQUES OXO-2 PHENYL-2 DIOXAPHOSPHORINANES-1,3,2.

Jean-Pierre MAJORAL, Robert PUJOL, Jacques NAVECH et Ferdinand MATHIS
Laboratoire de Chimie-Physique II, Université Paul Sabatier, 118, route de Narbonne,
Toulouse 04, 31, France)

(Received in France 15 August 1971; received in UK for publication 6 September 1971)

Dans le cadre de nos recherches sur les hétérocycles contenant du phosphore, nous avons été amené à étudier l'équilibre conformationnel en solution de quelques oxo-2 phényl-2 dioxaphosphorinanes-1,3,2 $\underline{1}$ à $\underline{5}$ que nous avons préparés par condensation de différents β -diols sur l'oxyde de phényldichlorophosphine.


Nous avons antérieurement constaté (1 à 3) que, dans les oxo-2 dioxaphosphorinanes-1,3,2, la fréquence de la vibration de valence de la liaison $P \rightarrow 0$ dépendait de la conformation. L'étude des spectres d'absorption infrarouge devait permettre non seulement de préciser la nature des conformères en présence mais aussi de déterminer l'enthalpie de la réaction de changement de conformation. L'enthalpie libre standard correspondante pouvait être atteinte au moyen de la résonance magnétique nucléaire.

Le spectre d'absorption de ces composés en solution dans le sulfure de carbone montre vers 1250-1290 cm⁻¹ soit deux bandes $v_{p\longrightarrow 0}$ nettement individualisées (cas des hétérocycles 1, 2, 3,4), soit une bande large et dissymétrique (cas du dioxaphosphorinane 5).

Pour les quatre premiers de ces phosphonates cycliques, les fréquences des deux bandes $^{\nu}_{P \longrightarrow 0}$ diffèrent de 26 cm⁻¹, ce qui est en accord avec les résultats antérieurs (1). Il en est autrement du composé $\frac{5}{5}$: l'analyse de la bande dissymétrique révèle deux bandes composantes distantes de 19 cm⁻¹ seulement.

3756 No. 40

Le fait qu'on ne décèle, dans les cinq cas, que deux bandes $v_{P\to 0}$ signifie qu'il n'existe que deux isomères de conformation. Pour les dioxaphosphorinanes-1,3,2 <u>1</u> à <u>4</u>, l'écart entre les deux bandes montre que, dans l'un et l'autre conformères, le cycle a la forme chaise (¹), ce qui est en bon accord avec différents résultats trouvés dans la littérature à propos d'hétérocycles phosphorés voisins (^{4 à 8}). L'anomalie constatée dans le composé <u>5</u> est peut être le signe d'une déformation assez forte de la forme chaise, par suite de la présence des quatre groupes méthyle en 4 et en 6.

Par ailleurs, l'examen des spectres d'absorption infrarouge montre que c'est la bande qui est située vers les fréquences les plus basses qui est de loin la plus intense dans le sulfure de carbone : d'après les résultats que nous avons trouvés précédemment (1), le composé prépondérant possède donc le groupement P-0 en position axiale (b).

Soient A_a et A_b les aires des bandes dues à la vibration de valence du groupement P-+O en position respectivement équatoriale et axiale, α_a et α_b les coefficients d'extinction molaire intégrés correspondants; on peut écrire (9):

$$K = \frac{A_b}{A_a} \cdot \frac{\alpha_a}{\alpha}$$

et, en supposant que l'enthalpie ne varie pas avec la température, dans l'intervalle de température étudié en spectrographie infrarouge,

$$\log_{10} \frac{A_b}{A_a} = -\frac{\Delta H^{\circ}}{4.6} \cdot \frac{1}{T} + cste$$

Par suite, si on trace la courbe $\log_{10} \frac{A_b}{A_a}$ en fonction de $\frac{1}{T}$, la pente de la droite ainsi obtenue fournit l'enthalpie ΔH° .

Nous avons ainsi pu déterminer ΔH° pour les cinq dioxaphosphorinanes-1,3,2. On ne connaît pas le rapport $\frac{a}{\alpha_b}$, ce qui empêche théoriquement d'atteindre K. Cependant, il est raisonnable d'admettre que les coefficients α_a et α_b correspondant à deux groupements P \rightarrow 0 non associés et situés dans des environnements, à la conformation près, identiques diffèrent très peu l'un de l'autre. Nous avons calculé ΔG° et ΔS° à 298 °K en supposant que α_a et α_b étaient égaux.

Nous avons déterminé l'enthalpie libre ΔG° pour le composé 2 grâce à la méthode préconisée par Katritsky et coll. (10) qui utilise la variation du déplacement chimique des groupements méthyle en fonction de la température. ΔG° est de -600 cal/mole dans le sulfure de carbone.

La cónnaissance de la valeur des constantes $^3J_{\underline{P}=0-C-\underline{H}}$ dans le même solvant pour les dioxaphosphorinanes-1,3,2 $\underline{2}$, $\underline{3}$ et $\underline{4}$ permet alors de determiner ΔG° pour les deux derniers selon une méthode que nous avons déjà utilisée (2).

COMPOSES			1	<u>2</u>	3	<u>4</u>	<u>5</u>
V _{P→0} (cm ⁻¹)		axial	1259	1259	1258	1262	1261
		équatorial	1287	1285	1284	1287	1280
J(Hz)		P-H _{4c} (ou 6c)		6,83	8,99	4,25	
		P-H _{4<u>t</u> (ou 6<u>t</u>)}		16,67	14,51	19,15	
- ΔH° (cal/mole)			425	440	440	1100	790
- ∆ G°. 298	cal	calc. par IR		600	620	1030	1100
(cal/mole	cale	calc. par RMN		650	340	1190	
ΔS°298	calc. à pa	artir de ΔG° (IR)	0,62	0,54	0,60	-0,24	110
(u.e)	calc. à p	artir de ΔG° (RMN)		0,70	-0,34	0,30	

Les valeurs des enthalpies libres conformationnelles obtenues grâce à la résonance magnétique nucléaire pour les dioxaphosphorinanes-1,3,2 $\underline{2}$ et $\underline{4}$ sont en bon accord avec celles que nous avions trouvées grâce à la spectrographie infrarouge. Il n'en est pas de même pour le composé $\underline{3}$: peut-être est-ce dû aux erreurs expérimentales. Dans la mesure où la méthode préconisée par Katritsky n'est pas trop imprécise, on voit donc que l'approximation faite plus haut $(\alpha_a \ \# \ \alpha_b)$ est raisonnable.

Nous avons également essayé de déterminer l'enthalpie libre conformationnelle pour le composé $\underline{2}$ en solution dans la pyridine. Le calcul grâce à la spectrographie infrarouge conduit à ΔG° = 120 cal/mole. La connaissance des constantes de couplage $^{\mathrm{J}}\underline{P}$ -0-C- \underline{H} dans ce nouveau solvant, $^{\mathrm{J}}\underline{P}$ - $\mathrm{H}_{\underline{4c}}$ (ou 6c) = 10,95 , $^{\mathrm{J}}\underline{P}$ - $\mathrm{H}_{\underline{4t}}$ (ou 6t) = 12,55 , nous permet comme précédemment de calculer ΔG° : on trouve ΔG = 100 cal/mole. La comparaison des deux valeurs semble ici aussi en faveur de l'égalité des coefficients d'extinction α_a et α_b .

BIBLIOGRAPHIE

- (¹) J.P. Majoral, R. Kraemer, J. Devillers et J. Navech, Bull. Soc. chim., Fr., 1970, p. 3917.
- J.P. Majoral et J. Navech, Bull. Soc. chim., Fr., 1971, p. 95.
- J.P. Majoral et J. Navech, Bull. Soc. chim., Fr., 1971, p. 1331.
- D. Gagnaire, J.B. Robert et J. Verrier, Bull. Soc. chim., Fr., 1968, p. 2392.
- R.S. Edmundson et E.W. Mitchell, J. chem. Soc., C, 1968, p. 2091.
- M. Haemers, Thèse, Bruxelles, 1967.
- (³) (⁴) (⁵) (⁶) (⁷) M. Kainosho et T. Shimozawa, Tetrahedron Letters, 1969, p. 865.
- W.G. Bentrude et J.H. Hargis, Tetrahedron, 1970, 92, 7136.
- E.L. Eliel, N.L. Allinger, S. Angyal et G.A. Morrison, in Conformational Analysis, Interscience Publishers, New-York, 1966, p. 146.
- (¹⁰) A.R. Katritsky, M.R. Nesbit, J. Michalski, Z. Tulimovski et A. Zwierzak, J. chem. Soc., B, 1970, p. 140.